Skip to main content

Getting Started

Before ModsysML, testing model quality and automating workloads was time-consuming, with ModsysML, you can simplify, accelerate and backtest the entire process. This makes it easier to train classifiers, handle real-time changes and make data driven decisions.

Lets install the SDK first...

pip install modsys

Evaluating prompt quality

modsys produces table views that allow you to quickly review prompt outputs across many inputs. The goal: tune prompts systematically across all relevant test cases, instead of testing prompts by trial and error.

Usage (command line)

Support for user interface coming soon

It works on the command line, you can output to [json, csv, yaml]:

Prompt eval

To get started, run the following command:

modsys init

This will create some templates in your current directory: prompts.txt, vars.csv, and config.json.

After editing the prompts and variables to your desired state, modsys command to kick off an prompt evaluation test:

modsys -p ./prompts.txt -v ./vars.csv -r openai:completion

If you're looking to customize your usage, you have a wide set of parameters at your disposal. See the Configuration docs for more detail:

OptionDescription
-p, --prompts <paths...>Paths to prompt files, directory, or glob
-r, --providers <name or path...>One of: openai:chat, openai:completion, openai:model-name, hive:hate, google:safety, etc. See AI Providers
-o, --output <path>Path to output file (csv, json, yaml, html)
-v, --vars <path>Path to file with prompt variables (csv, json, yaml)
-c, --config <path>Path to configuration file. config.json is automatically loaded if present
-j, --max-concurrency <number> coming soonMaximum number of concurrent API calls
--table-cell-max-length <number> coming soonTruncate console table cells to this length
--grader coming soonProvider that will grade outputs, if you are using

Examples

Prompt quality

In this example, we evaluate whether adding adjectives to the personality of an chat bot affects the responses:

modsys -p prompts.txt -v vars.csv -r openai:completion

Prompt eval

This command will evaluate the prompts in prompts.txt, substituing the variable values from vars.csv, and output results in your terminal.

Have a look at the setup and full output in another format:

modsys -p prompts.txt -v vars.csv -r openai:completion -o ./output.json

You can also output a nice spreadsheet, JSON, or YAML file:

{
"results": [
{
"prompt": {
"raw": "Rephrase this in French: Hello world",
"display": "Rephrase this in French: {{body}}"
},
"vars": {
"body": "Hello world"
},
"response": {
"output": "Bonjour le monde",
"tokenUsage": {
"total": 19,
"prompt": 16,
"completion": 3
}
}
}
// ...
],
"stats": {
"successes": 4,
"failures": 0,
"tokenUsage": {
"total": 120,
"prompt": 72,
"completion": 48
}
}
}

Here's an example of a side-by-side comparison of multiple prompts and inputs:

Model quality

You can evaluate the difference between safety outputs for a specific context:

Model quality tests & python package for model testing is a beta feature at the moment, open an issue and tag us to setup

modsys -p prompts.txt -r hiveai:hate google:safety -o output.json

Configuration

Building Automated Pipelines

View full documentation »

Let's setup your first Integration!

It will pull from your local database (and keep it in sync).

# import the package
from modsys.client import Modsys

# sync data from your database instance
# (we support supabase at the current moment or postgresql via uri format)
Modsys.connect("postgres://username:password@hostname:port/database_name")

# If you want to test out operation on your external connection
Modsys.fetch_tables()
Modsys.query("desc", "table", "column")

...and create a workflow with a simple command:

Note: you can use our sandbox api and skip providing a token or obtain a Auth token here, sign up today on our Site

# import the package
from modsys.client import Modsys

# Use any provider
Modsys.use("google_perspective:<model name>", secret="YOUR_API_TOKEN_HERE")

# Lets check to see if a phrase contains threats
Modsys.detectText(prompt="Phrase1", content_id="content-id", community_id="user-id")

Example response:

{
"attributeScores": {
"THREAT": {
"spanScores": [
{
"begin": 0,
"end": 12,
"score": { "value": 0.008090926, "type": "PROBABILITY" }
}
],
"summaryScore": { "value": 0.008090926, "type": "PROBABILITY" }
},
"INSULT": {
"spanScores": [
{
"begin": 0,
"end": 12,
"score": { "value": 0.008804884, "type": "PROBABILITY" }
}
],
"summaryScore": { "value": 0.008804884, "type": "PROBABILITY" }
},
"SPAM" // ...
},
"languages": ["en"],
"clientToken": "content_123",
"detectedLanguages": ["en", "fil"]
}

Experimental inputs:

# Create custom rules which creates a task!
Modsys.rule('Phrase1', '>=', '0.8')
Modsys.detectImage('Image1', 'contains', 'VERY_LIKELY') # Image Analysis/OCR
Modsys.detectSpeech('Audio1', 'contains', 'UNLIKELY') # Audio Processing
Modsys.detectVideo('Video1', 'contains', 'POSSIBLE') # Video Analysis
Modsys.detectText('Phrase1', 'contains', 'UNKNOWN') # Text Analysis
Modsys.test('prompt', 'expected_output') # ML Validation

That's all it takes!

In practice, you probably want to use one of our native SDKs to interact with Modsys's API or use Apollo ModsysML Console so you dont have to write code. If so, sign up at Apollo API!